Estimasi Tingkat Inflasi Nasional Menggunakan ARCH-GARCH Filter Kalman
نویسندگان
چکیده
Tingkat inflasi nasional merupakan salah satu indikator yang penting dalam menganalisis pertumubuhan perekonomian suatu negara. tidak dikelola dengan baik dapat menyebabkan negara mengalami kemunduran. Pada data tingkat digunakan model ARIMA (Autoregressive Integrated Moving Average) dan terdeteksi terdapat adanya heteroskedastisitas, sehingga time series ARCH-GARCH Conditional Heteroskedasticity-Generalized Heteroskedasticity). Model sesuai yaitu ARCH(1) nilai MAPE (Mean Absolute Percentage Error) masih sangat besar 34,662%. Oleh karena itu, untuk mendapatkan error lebih kecil dilakukan perbaikan menggunakan Filter Kalman. Hasil akhir menunjukkan bahwa Kalman mampu memperbaiki hasil estimasi ditandai ARCH-Filter dibandingkan ARCH. terbaik pada adalah polinomial derajat 2 Q=R=0,01 memiliki terkecil 1,0035%.
منابع مشابه
Glossary to ARCH (GARCH)
valuable comments and suggestions. Of course, I am solely to blame for any errors or omissions.
متن کاملARCH/GARCH Models in Applied Financial Econometrics
Volatility is a key parameter used in many financial applications, from derivatives valuation to asset management and risk management. Volatility measures the size of the errors made in modeling returns and other financial variables. It was discovered that, for vast classes of models, the average size of volatility is not constant but changes with time and is predictable. Autoregressive conditi...
متن کاملThe Unscented Kalman Filter
In this book, the extended Kalman filter (EKF) has been used as the standard technique for performing recursive nonlinear estimation. The EKF algorithm, however, provides only an approximation to optimal nonlinear estimation. In this chapter, we point out the underlying assumptions and flaws in the EKF, and present an alternative filter with performance superior to that of the EKF. This algorit...
متن کاملThe Kalman-Lévy filter
The Kalman filter combines forecasts and new observations to obtain an estimation which is optimal in the sense of a minimum average quadratic error. The Kalman filter has two main restrictions: (i) the dynamical system is assumed linear and (ii) forecasting errors and observational noises are projected onto Gaussian distributions. Here, we offer an important generalization to the case where er...
متن کاملSteady State Kalman Filter
In this paper a new approach for the steady state Kalman Filter implementation is proposed. The method is faster than the classical one; this is very important due to the fact that, in most real-time applications, it is essential to obtain the estimate in the shortest possible time.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Sains dan Seni ITS (e-journal)
سال: 2022
ISSN: ['2337-3520']
DOI: https://doi.org/10.12962/j23373520.v11i2.75827